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Abstract

Middlebury College participated in the TREC News Background Linking
task in 2021. We constructed a linear learning to rank model trained
on the 2018-2020 data and submitted runs that included variants on
the standard low resource learning-to-rank models.

In this notebook paper we detail the contents of our submissions and
our lessons learned from this year’s participation. We explored a few
variant models including a random forest ranker, linear models trained
on that random forest, and two-stage linear models, but found that
traditional, direct ranking still appears to be optimal.

1 Introduction

The TREC News Task is composed of two core tasks: Background Linking and Wikification. We only participated
in Background Linking this year. Given a single news document, the goal is to rank other documents from the
rest of the collection with respect to how useful they would be for background reading, in suggestion to a user.

We submitted four runs to the background-linking task, as described in the next section. We describe our
indexing and scoring process in Section 2, and our baseline features in Section 3. We discuss why our official
runs had such poor performance in Section 4 as well as what our performance is when evaluated on the correct
queries. Finally we briefly conclude that our experiments on simple LTR models yielded mostly negative results
in Section 5.

1.1 Runs Submitted

midd-direct This contains a Coordinate Ascent model trained directly on the baseline LTR features,
described in Table 1.

midd-rf This contains a Random Forest model trained directly on the baseline LTR features.

midd-transfer This a classificaiton model trained on the pseudo-truth output of the random forest classifier.

midd-linear This contains the baseline model without the clickbait/spam features.

midd-twostage This contains a combination of two linear rankers where the second stage re-ranks only the
top-10 documents; creating a nonlinear decision boundary focused on the topmost documents.
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2 News-Specific Processing

We first create an index using the irene software1 that is a combination of the inquery programming language [2,
12, 3, 7] with the Lucene document indexing system [10].

2.1 Indexing WaPo Articles

We indexed the Washington Post corpus provided for both news and core tasks with the following fields (when
available): published.date, url, kind, title, author, kicker, and we constructed a body from the text of
(HTML tags were removed with JSoup2) the JSON paragraph “blobs”.

2.2 Result Filtering

Duplicate detection was part of the challenge of working with Washington Post data this year, so we de-duplicated
documents by title (choosing the most recent publication date for any conflicts) and rejected all documents
without a title from ranking – feeling that documents are not useful for background research if they cannot be
summarized concisely.

3 Learning to Rank Baseline

Since there are 211 queries across the four years of TREC News, including this year’s test data, there were three
years (160 queries) of labeled data. 120 were used randomly as training data, and 40 were used as validation.

One of the most effective and simplest learning to rank models for small datasets is the Coordinate Ascent
model [8] because of its ability to directly optimize IR evaluation measures, as our corrected results from this
year suggest. As with prior submissions [4], we used the FastRank [5] tool in order to learn these linear models.

3.1 Document Pool Generation

In order to collect candidates for re-ranking, we use a baseline retrieval based on the top-50 terms (excluding
inquery3 stopwords). Each term is weighted based on its frequency in the query document, and a BM25 query
with these top-50 terms is generated and submitted against the full collection, with 300 documents collected at
first.

We removed any documents that did not have a title field. Following the track guidelines, we also excluded
documents whose kickers were: “Opinion(s)”, “Letters to the Editor”, or “The Post’s View”.

Finally, we limited our re-ranking pool to the top-200 documents by BM25 score, a feature we kept around as
our “pool-score”.

3.2 Learning to Rank Features

Our learning to rank features fall into three categories, and are presented in Table 1.

Textual Similarity The first category of features include the standard similarity, the pooling retrieval
model, and similarities between the title and document of the query and candidate documents.

Temporal Features Since the Wapo Collection contains a document stream, we incorporated a handful
of features using the article’s publication date and time, as interpreted by the python arrow library.

Quality Features The last category of features we describe are quality & metadata features. They are
query-independent and are meant to be a kind of filter on the types of documents that are valuable to
recommend to a user [1].

Clickbait Features We also generated a clickbait feature for WaPo articles based on their title, following
our approach in prior years [4]. Since we had an extra run, we decided to submit a model with
(“midd-direct”) and without (“midd-linear”) these clickbait features.

1https://github.com/jjfiv/irene
2https://jsoup.org/
3Sometimes called the Inquery-418 stopword list: https://github.com/jjfiv/retired-galago/blob/main/src/main/resources/

stopwords/inquery
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Group Feature Description
Textual Similarity pool-score The top-50 words in the query document [6] executed as a weighted-BM25

query [11]
local-sim Dot Product of tf-idf vectors as created by “sklearn“ [9].
kicker-sim We built count-based language models of each kicker tag by accumulating

over all documents containing each tag; this is the cosine similarity of the
models for the query document and candidate document.

Temporal Models time-delta The difference in publication times (seconds).
day-delta The difference in publication times (days).
same-week True if query and candidate were published within 7 days of each other.
same-month True if query and candidate were published within 31 days of each other.

Quality Features uniq-words Number of unique words in the document.
length Length of candidate document.
length-ratio Length of candidate document divided by the length of the query docu-

ment.
avg-word-len A common reading-level approximate; the length of the average word.
avg-para-len The average length of the paragraphs in the article (in characters)

Clickbait Features d-clickbait Clickbait-probability of candidate title [4]
q-clickbait Clickbait-probability of query document title

Table 1: List of Learning to Rank Features

4 Discussion

The official runs from Middlebury manage to get NDCG@5 performance of nearly zero. When we dug into why
this happened, it became clear that we had submitted runs that had not found almost any relevant documents.

In early June, the student author on this paper discovered an issue with the officially released queries. The
faculty author reported this to track organizers, and a corrected file was released. However, in July, when the
faculty author went to regenerate pools for the test data he failed to download the updated query file, thus
submitting the wrong queries for each and every query id.

Upon re-running our models on 2021 judgments released with the corrected query files, we’re able to explore
our differently-trained linear and random-forest models.

Unfortunately, it seems using all features with coordinate ascent directly makes the most sense, and all other
experimental settings lead to a loss in quality, despite midd-rf and midd-twostage theoretically supporting more
nonlinear combinations of features.

An interesting finding is that midd-transfer performed better on unseen data than midd-rf, even though it
was trained on the unsupervised output of the midd-rf model in an attempt to deal with sparsity of judgment,
suggesting that the random forest model we trained was the victim of overfitting.

See Table 2 for full evaluation numbers below.

Submitted Run Model Features Training NDCG@5 NDCG
midd-direct CA All direct 0.452 0.575
midd-linear CA No Clickbait direct 0.451 0.560
midd-rf RF All direct 0.429 0.557
midd-transfer CA All RF 0.449 0.543
midd-twostage CA No Clickbait top-10 linear 0.442 0.552

Table 2: Evaluation of submitted models on official qrel-files (with corrected query ids). Official Evaluation
metric: NDCG@5

5 Conclusion

When we re-evaluate our results, we find that the exploration of alternative learning-to-rank models mostly led to
negative results. Our linear models (“midd-direct” and “midd-linear”) broadly outperformed our random-forest
model (“midd-rf”). However, our linear model trained on the output of the random-forest model (“midd-transfer”)
generalized better to the test data than our random-forest model, but it was insignificantly worse than training a
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linear model directly. Finally, our two-stage model where we trained an additional linear model to re-rank the
top-ten documents led to a small loss.
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